A major role for mitotic CDC2 kinase inactivation in the establishment of the mitotic DNA damage checkpoint.

نویسندگان

  • Emilie Bayart
  • Olga Grigorieva
  • Serge Leibovitch
  • Rosine Onclercq-Delic
  • Mounira Amor-Guéret
چکیده

Cdc2 kinase is inactivated when DNA damage occurs during the spindle assembly checkpoint. Here, we show that the level of mitotic Bloom syndrome protein phosphorylation reflects the level of cdc2 activity. A complete inactivation of cdc2 by either introduction of DNA double-strand breaks or roscovitine treatment prevents exit from mitosis. Thus, mitotic cdc2 inactivation plays a major role in the establishment of the mitotic DNA damage checkpoint. In response to mitotic cdc2 inactivation, the M/G(1) transition is delayed after releasing the drug block in nonmalignant cells, whereas tumor cells exit mitosis without dividing and rereplicate their DNA, which results in mitotic catastrophe. This opens the way for new chemotherapeutic strategies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Negative regulation of Wee1 expression and Cdc2 phosphorylation during p53-mediated growth arrest and apoptosis.

The G2 cell cycle checkpoint protects cells from potentially lethal mitotic entry after DNA damage. This checkpoint involves inhibitory phosphorylation of Cdc2 at the tyrosine-15 (Y15) position, mediated in part by the Wee1 protein kinase. Recent evidence suggests that p53 may accelerate mitotic entry after DNA damage and that the override of the G2 checkpoint may play a role in the induction o...

متن کامل

RPA phosphorylation facilitates mitotic exit in response to mitotic DNA damage.

Human replication protein A (RPA) becomes phosphorylated on the RPA2 subunit by cyclin B-Cdc2 during mitosis, although the functional role of this modification is unclear. We find that this modification stimulates RPA2 to become hyperphosphorylated in response to mitotic DNA damage caused by bleomycin treatment. Cells in which endogenous RPA2 was replaced by a mutant subunit lacking both Cdc2 s...

متن کامل

Cdc2 tyrosine phosphorylation is required for the DNA damage checkpoint in fission yeast.

A common cellular response to DNA damage is cell cycle arrest. This checkpoint control has been the subject of intensive genetic investigation, but the biochemical mechanism that prevents mitosis following DNA damage is unknown. In Schizosaccharomyces pombe, as well as vertebrates, the timing of mitosis under normal circumstances is determined by the balance of kinases and phosphatases that reg...

متن کامل

Recovery from DNA damage checkpoint arrest by PP1-mediated inhibition of Chk1.

The G2 DNA damage checkpoint delays mitotic entry via the upregulation of Wee1 kinase and the downregulation of Cdc25 phosphatase by Chk1 kinase, and resultant inhibitory phosphorylation of Cdc2. While checkpoint activation is well understood, little is known about how the checkpoint is switched off to allow cell cycle re-entry. To identify proteins required for checkpoint release, we screened ...

متن کامل

Regulation of Mitotic Inhibitor Mik1 Helps to Enforce the DNA Damage Checkpoint

The protein kinase Chk1 enforces the DNA damage checkpoint. This checkpoint delays mitosis until damaged DNA is repaired. Chk1 regulates the activity and localization of Cdc25, the tyrosine phosphatase that activates the cdk Cdc2. Here we report that Mik1, a tyrosine kinase that inhibits Cdc2, is positively regulated by the DNA damage checkpoint. Mik1 is required for checkpoint response in stra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 64 24  شماره 

صفحات  -

تاریخ انتشار 2004